Analysis of genetic variability and whole genome linkage of whole-brain, subcortical, and ependymal hyperintense white matter volume.
نویسندگان
چکیده
BACKGROUND AND PURPOSE The cerebral volume of T2-hyperintense white matter (HWM) is an important neuroimaging marker of cerebral integrity. Pathophysiology studies identified that subcortical and ependymal HWM are produced by 2 different mechanisms but shared a common risk factor: high arterial pulse pressure. Recent studies have demonstrated high heritability of the whole-brain HMW volume and reported significant and suggestive evidence of genetic linkage. We performed heritability and whole-genome linkage analysis to replicate previous reported findings and to study shared genetic variance, and possible overlap for specific loci, between subcortical and ependymal HWM volumes in a population of healthy Mexican Americans. METHODS The volumes of subcortical and ependymal HWM regions were measured from high-resolution (1 mm(3)), 3-dimensional fluid-attenuated inversion recovery images acquired for 459 (283 females, 176 males) active participants in the San Antonio Family Heart Study. Subjects ranged in age from 19 to 85 years of age (47.9+/-13.5 years) and were part of 49 families (9.4+/-8.5 individuals per family). RESULTS The volumes of whole-brain, subcortical, and ependymal HWM were highly heritable (h(2)=0.72, 0.66, and 0.73, respectively). The subcortical and ependymal HWM volumes shared 21% of genetic variability indicating significant pleiotropy. Genomewide linkage analysis showed only a suggestive bivariate linkage for subcortical and ependymal HWM volumes (log of odds=2.12) on chromosome 1 at 288 cM. CONCLUSIONS We replicated previous findings of high heritability for the whole-brain HWM volume. We also showed that subcortical and ependymal volume shared a significant portion of genetic variability and the bivarate linkage analysis produced a suggestive linkage near the locus previously identified in a study of whole-brain HWM volume and arterial pulse pressure.
منابع مشابه
Whole brain and regional hyperintense white matter volume and blood pressure: overlap of genetic loci produced by bivariate, whole-genome linkage analyses.
BACKGROUND AND PURPOSE The volume of T2-hyperintense white matter (HWM) is an important neuroimaging marker of cerebral integrity with a demonstrated high heritability. Pathophysiology studies have shown that the regional, ependymal, and subcortical HWM lesions are associated with elevated arterial pulse pressure and arterial blood pressure (BP), respectively. We performed bivariate, whole-geno...
متن کاملThe Pattern of Linkage Disequilibrium in Livestock Genome
Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...
متن کاملAn automated registration algorithm for measuring MRI subcortical brain structures.
An automated registration algorithm was used to elastically match an anatomical magnetic resonance (MR) atlas onto individual brain MR images. Our goal was to evaluate the accuracy of this procedure for measuring the volume of MRI brain structures. We applied two successive algorithms to a series of 28 MR brain images, from 14 schizophrenia patients and 14 normal controls. First, we used an aut...
متن کاملBrain Structural Changes Caused by Autism Spectrum Disorder Based on Volumetric Analysis of Magnetic Resonance Images: A Review Study
Background and purpose: Autism spectrum disorder (ASD) is a psychiatric disorder which occurs in early years of life and causes various individual and social problems. Early detection of autism would help in taking necessary precautions and preventing its adverse side effects. Methods & Materials: In this paper, we reviewed the articles that have investigated brain structural changes caused by...
متن کاملSubcortical deep gray matter pathology in patients with multiple sclerosis is associated with white matter lesion burden and atrophy but not with cortical atrophy: a diffusion tensor MRI study.
BACKGROUND AND PURPOSE The association between subcortical deep gray matter, white matter, and cortical pathology is not well understood in MS. The aim of this study was to use DTI to investigate the subcortical deep gray matter alterations and their relationship with lesion burden, white matter, and cortical atrophy in patients with MS and healthy control patients. MATERIALS AND METHODS A to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 40 12 شماره
صفحات -
تاریخ انتشار 2009